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for the circular disk for both the double series and the reduced
form and the discrepancy between them., Fig. 3 shows the values
of Z,, for the annular ring for both the double series and the
reduced form as well as the discrepancy between them.

VI. CoNcLUSION

The Green’s functions for the circular disk and the annular
ring have been reduced to single-series forms in a mathemati-
cally direct manner, eliminating the need for the eigenvalues
and, as a consequence, improving the speed and accuracy of the
computation.
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A Surface Integral Equation Method for the
Finite Element Solution of Wavegunide
Discontinuity Problems

Omar M. Ramahi and Raj Mittra

Abstract —The surface integral equation method, which is typically
employed in the finite element solution of open-region scattering prob-
lems, has been applied in this paper to the solution of waveguide
discontinuity problems. The major advantage offered by the surface
integral equation approach over other available methods is that it allows
the mesh-truncating boundaries to be brought as close to the discontinu-
ity as possible, thus helping to reduce the size of the system matrix. In
addition, unlike the mode matching technique, the surface integral
equation formulation does not require the solution of any auxiliary
matrix system. Numerical results are presented to illustrate the validity
of the formulation.

I. INTRODUCTION

When designing waveguide devices, it is often necessary to
introduce discontinuities or loads that are used for different
purposes such as phase shifting or power matching to a specific
load or termination. The analysis of such waveguide junctions or
discontinuities has traditionally been carried out using the
mode-matching techniques and the integral equation method
[1], [2]. However, when the discontinuities are irregularly shaped
or involve inhomogeneous or anisotropic objects, the integral
equation methods become quite laborious and difficult to apply.
For such complex and irregularly shaped geometries, either the
finite element or the finite difference method becomes the
preferred choice. Additionally, the finite methods generate
highly sparse and banded matrices which can be efficiently
handled using special algorithms.

When using the finite element (or the finite difference) method
to solve boundary values problems such as waveguide disconti-
nuities, two major consideration arise. First, it is always desir-
able to bring the mesh-truncating boundary as close as possible
to the discontinuity junction in order to reduce the number of
mesh points and, hence, the size of the associated matrix.
Second, a boundary condition must be imposed on the terminal
boundaries such that it accurately reflects the proper field
behavior there. The task of devising an efficient solution proce-
dure that accommodates the above two considerations is the
principal subject of discussion in this paper.

Conventionally, finite element formulations of the waveguide
discontinuity problem are based upon the truncation of the
finite element mesh region at a distance where the amplitudes
of the evanescent modes become negligible, and then the impo-
sition of a Dirichlet or a Neumann boundary condition [3], [4].
Such construction offers the advantage of generating a sparse
matrix system. In certain applications, such as the modeling of
electromagnetic pulse simulators, the width of the simulator/
waveguide may range from a fraction of a wavelength to tens of
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wavelengths, which gives rise to evanescent modes having signifi-
cant amplitudes within an appreciable distance from the discon-
tinuity. Consequently, to guarantee sufficient accuracy of the
finite element solution, it becomes necessary to extend the mesh
region such that the amplitudes of the evanescent modes be-
come negligible at the truncation boundary. Naturally, this ren-
ders the solution procedure very impractical. Another widely
used procedure is to use the finite element method in conjunc-
tion with the mode-matching technique. Although this method
allows the outer boundary to be brought close to the discontinu-
ity, and thus minimizes the size of the system matrix, it suffers
from two disadvantages: (i) it requires the solution of an addi-
tional auxiliary matrix system and (ii) it has the potential of
generating spurious modes.

In this paper, we use the ‘surface integral equation as a
boundary condition for the finite element mesh region. The use
of the surface integral equation as a boundary condition for
electromagnetic problems was first reported in the work of
McDonald and Wexler [5], where it was applied to solve the
Poisson equation. Others have used the method to solve open-
region electromagnetic radiation problems [6], [7]. In [8] and [9],
the boundary element method, which in its theoretical develop-
ment parallels the surface integral approach, has been employed
to treat waveguide discontinuity problems. The disadvantage in
using the boundary element method, however, arises when deal-
ing with multimedia problems [8].

Because the surface integral equation is an exact boundary
condition, it can handle both the propagating and evanescent
modes at the truncation boundary. This, in turn, allows us to
bring the outer boundaries very close to the discontinuity, While
this feature is also realized by the mode matching technique, the
surface integral equation approach has the advantage that it
does not introduce any spurious modes into the solution. In
addition, the surface integral equation method requires the
solution of the system matrix only once; thus, the need to solve
an auxiliary matrix system is obviated. The complete procedure
for the formulation of the surface integral equation appears in
Section II. In Section III, we present numerical results for a
simple iris ‘discontinuity problem, where a comparison is made
with the results obtained by using the method of moments.
Results are also presented for a waveguide containing dielectric
obstacles, and a comparison is made with the exact solution
wherever possible. Section IV presents some concluding re-
marks.

. SUrRFACE INTEGRAL EQuUATION IN THE FINITE
ELemMENT SOLUTION

In this section, we present the formulation of the surface
integral equation method and specialize it to the waveguide
discontinuity problem. Only the parallel-plate waveguide will be
considered in this work, However, the theoretical formulation
presented in this paper can be extended to rectangular or
cylindrical waveguides as well.

Consider Fig. 1, which shows a multiport parallel-plate wave-
-guide device with an irregularly shaped junction containing
inhomogeneous source-free material. It will be assumed, without
loss of generality, that the source field is incident from the port
labeled the excitation port (see Fig. 1). The finite element mesh
region will then mclude the discontinuity and will be bound by
the layers I'g;, i = 0,2, -, N. Let Q™™ denote the finite element
region. We use the conventlonal finite element formulation [10],
[11], in conjunction with Green’s theorem, to obtain the weak
form of the Helmholz equation

aHdl 1
e (1)

, 1
fn()VHVv—ku(x)Hvds fﬂe(x)‘

———

excitation — T ' port2 .
port incident field oo i
—_— ]
b‘ port N
Fig. 1. Geometry for a multiport waveguide system.

Fig. 2. Geometry for the construction of the surface integral equation.

where H is the 'y component of the unknown total ‘magnetic
field, and v is the testing function. '

Next, we divide the solution region Q™ into triangular ele-
ments and approximate the unknown field H over each of the
elements by a set of interpolating functions:

3
H(x)= ¥ Hii(x).

i=1

()

For the first-order linear triangular elements, the ¢;’s are linear
interpolatory functions with a finite support covering a single
triangular element, and the H,’s are the nodal field values at the
vertices of each element. By choosing the testing functions
identical to those for the ¢;’s, and after substituting (2) into (1),
we arrive at the typical finite element matrix system

MU=B
which is symbolically represented as

Moo Mo 0 U Bo
Mpo  Mpp Mpc || U |=| Bs
0  Meg Mcc|[Uc] [Bc

(3

where M is the stiffness matrix, and Up,, Ug, and U are column
vectors corresponding to the nodal field values at the layers
Foo,rov * FON’ the layers rBo, FB]’ * FBN’ and the ll’lterlor
region of the discontinuity Q™, respectlvely (see Fig. 1). The Ty
boundary layer defines the boundary of the finite element mesh.
The outermost boundary layer, Iy, is constructed for the en-
forcement of the boundary conditions, as will be discussed
below.

Returning to (3), we note that our boundary value problem
cannot be fully spec1f1e& unless the matrix B, particularly B, is
explicitly known. This, in turn, requires enforcing a boundary
condition at each of the Iz layers.

The surface integral equation is constructed by expressing the
field in the interior of each of the waveguides in terms of the
field and its -normal derivative on the respective waveguide walls
and its terminal boundaries (see Fig. 2). Invoking the Green’s
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fﬁnction theorem [12], we have
H(x) =f xtG(x/x’)VH(x’)-ﬁB — H(x)VG(x/x) hgdl
502°
(4)

where x' is the integration coordinate, ny is the outward normal
unit vector from dQ°, and G is the Green’s function.

The surface integral equation in (4) can be 51mp11f1ed by using
a Green’s function of the first kind, GO, which is defined as the
solution of

VGO (x/x)+ k2GD(x/x)=—8(x—x")
Subject to the boundary condition

GP=0  onaQ™.

The Green’s function of the first kind can, therefore, be ob-
tained as the solution of the parallel-plate waveguide when
terminated at the layer I’y with a perfect magnetic wall. Since
GO and H satisfy the radlatlon condition at z= 4o, and
d0H/dn=0 on the waveguide walls I'; and I‘z, the surface
integral equation reduces to

H(x)=uO(x) + [ o HEOVG(/x) g dl” (5)

where 1™ is defined as the total field in the presence of a
-perfect magnetic conductor placed at I'5.

An analytical expression for aGL 6n can be easily obtained,

and is given by

IGWv ® € nwx\ ' (nwx' :

N = n T(z~12'D

e (x/x) ngo aT, cos( . )cos( - )e
where a is the width of the waveguide, T, = /{k2 —(n7 /a)?},
and €,=1 for n=0, and 2, otherwise. The use of Green’s
function of the first kmd G(l’ also eliminates the need for the
numerical differentiation that would otherwise be required to
express the normal derivative of the field on the I'; boundary.
This, in turn, leads to higher solution accuracy.

The use of the surface integral equation as a boundary condi-
tion for the finite element region (region of the discontinuity)
requires transforming or descretizing (5) into a matrix equation
that would eventually augment the finite element matrix system.
This discretization can be accomplished in different ways de-
pending on the interpolatory functions chosen to expand the
field on the contours I;. However, to maintain a consistent
order of the approximation throughout the solution region vis-a-
vis the finite element solution, and, furthermore, to ensure the
proper preconditioning of the matrix system such that the spar-
sity of the matrix is maximized, we employ piecewise-linear basis
functions. For_simplicity, we choose basis functions that are
identical to the basis functions used in the finite element region.
Thus, expanding the scattered field over the contours Ty, in
terms of linear basis functions, we have

H({)= E ZHtlf,(s“)

j=1li=1

(6)

where ¥;({) is defined locally over the edge of each boundary
element as

wo={ "

The first summation in (6) is taken over all elements, numbering
M, that are tangential to the contours 'y, and the H;’s are the
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Fig. 3. Finite element (FEM) and exact solutions for the normalized
total H-field distribution for a waveguide with a lossy uniform dielectric
termination. Outer boundary I at z = 0. (a) Magnitude. (b) Phase.

nodal field values at the layers I'p. Substituting (6) into (5), we
arrive at the discretized version of the surface integral equation,
viz.,

H(xo)——Z‘,1 ZIH f I(x2)VGV(xp /%) figdl’. (7)

Finally, enforcing (7) at each of the T, layer nodes gives the
boundary matrix equation

U,=SUy+T

where § is an M X M matrix with elements defined as

. (8)

Sy = j(;em‘/szG(l)( x;/x;) hgdl

+ j;e(i)l/f1VG(1)( xj/xk) ‘fhigd{’

and 9e is the edge of element j. The column matrix T in (8)
has the contribution from the excitation field which was as-
sumed to be incident only from the excitation port.

The net result of the above construction is the transformation
of the surface integral equation into an algebraic equation.
Therefore, the matrix equation (8) can be interpreted as an
algebraic boundary operator, or a matrix boundary condition for
the system in (3). The final matrix system is arrived at by adding
(8) to (3). This circumvents the need to evaluate the column
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z =0‘4

Fig. 4. Geometry for the parallel-plate waveguide with a. dielectric
circular cylinder. Outer boundary at I'y at z=0.
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Fig. 5. Contour H-field plot for the cylinder loaded waveguide.

vector B, by dispensing with the first row of the matrix M in (3)
altogether. The resulting matrix reads

(MpoS + Mpg) MBC“:UB] =[BB_BBOT] )
Mcg Mcc [V Ue B¢

A close observation of the matrix equation in (9) shows that
the matrix blocks M. and M are a direct result of the finite
element descretization of the discontinuity region Q™™¢; there-
fore, the largest block of the system matrix will be sparse. Only
the row matrix corresponding to the boundary layer nodes Uy

- will result in a partially populated block.

III. NUMERICAL RESULTS

Based on the mathematical formulation outlined above, a
finite element code was developed which incorporated the sur-
face integral equation formulation. Three different simple ge-
ometries were studied in this work, and a comparison was made,
whenever possible, with the results derived by using the analyti-
cal methods or the integral equation technique. While the
formulation presented in Section II allows for field excitations
having higher order modes, the examples presented below are
for the incident TEM mode only.

In the first case, we considered a uniformly loaded parallel-
plate waveguide. This waveguide geometry makes a good case
study ‘since it can be simulated by a simple transmission line

607

magnitude

magnifude

()

Fig. 6. Finite element (FEM) and Wiener-Hopf [1] solutions for the
normalized magnitude of the aperture field distribution in an iris loaded
(at z=10) parallel-plate waveguide due to an incident TEM mode.

Quter boundary Ty at z=—02a, +0.2A. (a) At 'the plane z=0".

(b) At the plane z=0".

system. Fig. 3 shows good agreement obtained for the magni-
tude and phase as evaluated along an axial cut (x =0), for a
0.3A width waveguide. The lossy filling material had a relative
permittivity of e, =(4.0— j1.0). The terminal boundary Iy was
placed, as shown in the inset to Fig. 1, at 0.1A from the
dielectric interface.

In the second geometry, we considered a 0.4\ waveguide
having a circular dielectric cylinder with a radius of 0.14A and
€, = 4 (see Fig. 4). Fig. 5 shows the contour plot for the normal-
ized total H field superimposed on the waveguide geometry.
The field lines can be observed to have a higher concentration
inside the dielectric material.

As a third example, we considered an iris- loaded wavegmde
From the perspective of the finite element modeling, it is
important to assume here that the iris has a finite thickness.
This is necessary to account for the difference$ in the surface
currents flowing on each side of the iris. The assumed:iris
thickness was 0.01A, and the finite element results are compared
with those for the solution generated using thé Wlener Hopf
technique [1]. Fig. 6 shows numerical results fof the magmtude
of the normalized H-field distribution along wertical cuts on
both sides of the metallic iris, and their comparlsén with the
Weiner—Hopf solution [1] for an infinitely” thin iris. The good
agreement shown in this figure was achieyed even when' the
outer boundaries were placed as close as 0. 2 from the iris. This
clearly demonstrates that the surface integral equatlon method
can achieve numerical efficiency by reducing the size of the
interior region and, hence, the number of flmte element nodes.
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IV. Concrusions

In this work, the surface integral equation has been used as a
boundary condition for the finite element solution of the multi-
port waveguide discontinuity problem. The major advantage
offered by the use of the surface integral equation approach is
that it allows for placing the mesh-terminating outer boundaries
of the finite element region as close to the junction discontinuity
as possible, thus minimizing the size of the finite element
matrix. This advantage is achieved despite the fact that the
evanescent modes have significant amplitudes in the region
close to the discontinuity, The accuracy of the surface integral
equation formulation and its simplicity make it an efficient and
versatile tool in the analysis of waveguide discontinuity prob-
lems.
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On the Use of Shanks’s Transform to Accelerate
the Summation of Slowly Converging Series

Surendra Singh and Ritu Singh

Abstract —1It is shown that the application of Shanks’ transform
results in accelerating the convergence of slowly converging series. The
transform is applied to a periodic Green’s function involving a single
summation. The convergence properties of this series are reported for
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in (1) for x=a /2.

the “on-plane” case, in which the series converges extremely slowly.
Numerical results indicate that by employing Shanks’s transform the
computation time can be reduced by as much as a factor of 200.

I. INTRODUCTION

In the analysis of periodic structures, one usually encounters a_
Green’s function which converges very slowly. As repeated eval-
uations of the Green’s function series are needed in determining
the radiation or scattering from a periodic array using the
method of moments with subsectionally defined basis functions,
the slow convergence of the series would result in a considerable
amount of computation time. In order to reduce this time, we
look for ways to accelerate the convergence of the Green’s
function series. A method for improving the convergence of a
doubly infinite periodic Green’s function series has previously
been suggested [1]-[3]. It has been successfully applied by a
number of investigators to singly and doubly periodic Green’s
function series [4]-[8]. This paper reports the use of Shanks’s
transform in accelerating the convergence of a periodic Green’s
function involving a single infinite summation. Although the use
of Shanks’s transform in conjunction with Kummer’s and
Poisson’s transformations has been shown in [3] to improve the
convergence of a doubly periodic Green’s function, it is reported
here that a simple application of this transform alone to very
slowly converging series enhances their convergence tremen-
dously. Another advantage of using the transform is that no
analytical work need be done to the series. This is an attractive
feature, as the transform can be applied to a wide variety of
series.

II. IiLusTRATIVE EXAMPLE OF SHANKS’S TRANSFORM

If a sequence of partial sums of a series behaves as a
“mathematical transient” as defined by Shanks in [9], then it is
possible to extract the base of this “transient” by an application
of Shanks’s transform [9]. The transform is applied successively
to the partial sums of the series until a predefined convergence
criterion is satisfied. An algorithm to compute different orders
of Shanks’s transform is given in [10]. It is interesting to note
that although the partial sums show no indication of converging
to the sum of the series, the application of Shanks’s transform is
able to extract the sum from these partial sums. This is illus-
trated by taking the following series:

T sin(2n—-1)x
5o 3 sn@n-Dx.
47 (2n—-1)

n=1

¢y
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